Diffusion-Like Reconstruction Schemes from Linear Data Models
نویسنده
چکیده
In this paper we extend anisotropic diffusion with a diffusion tensor to be applicable to data that is well modeled by linear models. We focus on its variational theory, and investigate simple discretizations and their performance on synthetic data fulfilling the underlying linear models. To this end, we first show that standard anisotropic diffusion with a diffusion tensor is directly linked to a data model describing single orientations. In the case of spatio-temporal data this model is the well known brightness constancy constraint equation often used to estimate optical flow. Using this observation, we construct extended anisotropic diffusion schemes that are based on more general linear models. These schemes can be thought of as higher order anisotropic diffusion. As an example we construct schemes for noise reduction in the case of two orientations in 2d images. By comparison to the denoising result via standard single orientation anisotropic diffusion, we demonstrate the better suited behavior of the novel schemes for double orientation data.
منابع مشابه
Stochastic reconstruction of carbon fiber paper gas diffusion layers of PEFCs: A comparative study
A 3D microstructure of the non-woven gas diffusion layers (GDLs) of polymer electrolyte fuel cells (PEFCs) is reconstructed using a stochastic method. For a commercial GDL, due to the planar orientation of the fibers in the GDL, 2D SEM image of the GDL surface is used to estimate the orientation of the carbon fibers in the domain. Two more microstructures with different fiber orientations are g...
متن کاملAn Extension of Energy Stable Flux Reconstruction to Unsteady, Non-linear, Viscous Problems on Mixed Grids
This paper extends the high-order Flux Reconstruction (FR) approach to the treatment of non-linear diffusive fluxes on triangles. The FR approach for solving diffusion problems is reviewed on quadrilaterals and extended for triangles, allowing the treatment of mixed grids. In particular, this paper examines a subset of FR schemes, referred to as VincentCastonguay-Jameson-Huynh (VCJH) schemes, w...
متن کاملEnergy Stable Flux Reconstruction Schemes for Advection-Diffusion Problems on Tetrahedra
Theflux reconstruction (FR)methodology provides a unifying description ofmany high-order schemes, including a particular discontinuous Galerkin (DG) scheme and several spectral difference (SD) schemes. In addition, the FR methodology has been used to generate new classes of high-order schemes, including the recently discovered ‘energy stable’ FR schemes. These schemes, which are often referred ...
متن کاملTarget setting in the process of merging and restructuring of decision-making units using multiple objective linear programming
This paper presents a novel approach to achieving the goals of data envelopment analysis in the process of reconstruction and integration of decision-making units by using multiple objective linear programming. In this regard, first, we review inverse data envelopment analysis models for data reconstruction and integration. We present a model with multi-objective linear programming structure in...
متن کاملar X iv : 1 60 3 . 03 17 1 v 1 [ m at h . A P ] 1 0 M ar 2 01 6 WELL - BALANCED AND ASYMPTOTIC PRESERVING SCHEMES FOR KINETIC MODELS
Abstract. In this paper, we propose a general framework for designing numerical schemes that have both well-balanced (WB) and asymptotic preserving (AP) properties, for various kinds of kinetic models. We are interested in two different parameter regimes, 1) When the ratio between the mean free path and the characteristic macroscopic length ε tends to zero, the density can be described by (adve...
متن کامل